Add OrderHistory
class
- the main purpose of this class is to manage querying the order totals from the database and slice various kinds of time series out of the data - the class holds the former `aggregate_orders()` function as a method - modularize the corresponding tests - add `tests.config` with globals used when testing to provide a single source of truth for various settings
This commit is contained in:
parent
d5b3efbca1
commit
65d1632e98
6 changed files with 289 additions and 129 deletions
|
@ -1,6 +1,6 @@
|
|||
"""Obtain and work with time series data."""
|
||||
|
||||
import datetime
|
||||
import datetime as dt
|
||||
|
||||
import pandas as pd
|
||||
|
||||
|
@ -8,107 +8,140 @@ from urban_meal_delivery import config
|
|||
from urban_meal_delivery import db
|
||||
|
||||
|
||||
def aggregate_orders(grid: db.Grid, time_step: int) -> pd.DataFrame: # pragma: no cover
|
||||
"""Obtain a time series of the ad-hoc `Order` totals.
|
||||
class OrderHistory:
|
||||
"""Generate time series from the `Order` model in the database.
|
||||
|
||||
Args:
|
||||
grid: pixel grid used to aggregate orders spatially
|
||||
time_step: interval length (in minutes) into which orders are aggregated
|
||||
|
||||
Returns:
|
||||
order_totals: `DataFrame` with a `MultiIndex` of the "pixel_id"s and
|
||||
beginnings of the intervals (i.e., "start_at"s); the sole column
|
||||
with data is "total_orders"
|
||||
The purpose of this class is to abstract away the managing of the order data
|
||||
in memory and the slicing the data into various kinds of time series.
|
||||
"""
|
||||
# `data` is probably missing "pixel_id"-"start_at" pairs.
|
||||
# This happens whenever there is no demand in the `Pixel` in the given `time_step`.
|
||||
data = pd.read_sql_query(
|
||||
f"""-- # noqa:WPS221
|
||||
SELECT
|
||||
pixel_id,
|
||||
start_at,
|
||||
COUNT(*) AS total_orders
|
||||
FROM (
|
||||
|
||||
def __init__(self, grid: db.Grid, time_step: int) -> None:
|
||||
"""Initialize a new `OrderHistory` object.
|
||||
|
||||
Args:
|
||||
grid: pixel grid used to aggregate orders spatially
|
||||
time_step: interval length (in minutes) into which orders are aggregated
|
||||
|
||||
# noqa:DAR401 RuntimeError
|
||||
"""
|
||||
self._grid = grid
|
||||
self._time_step = time_step
|
||||
|
||||
# Number of daily time steps must be a whole multiple of `time_step` length.
|
||||
n_daily_time_steps = (
|
||||
60 * (config.SERVICE_END - config.SERVICE_START) / time_step
|
||||
)
|
||||
if n_daily_time_steps != int(n_daily_time_steps): # pragma: no cover
|
||||
raise RuntimeError('Internal error: configuration has invalid TIME_STEPS')
|
||||
self._n_daily_time_steps = int(n_daily_time_steps)
|
||||
|
||||
# The `_data` are populated by `.aggregate_orders()`.
|
||||
self._data = None
|
||||
|
||||
@property
|
||||
def totals(self) -> pd.DataFrame:
|
||||
"""The order totals by `Pixel` and `.time_step`.
|
||||
|
||||
The returned object should not be mutated!
|
||||
|
||||
Returns:
|
||||
order_totals: a one-column `DataFrame` with a `MultiIndex` of the
|
||||
"pixel_id"s and "start_at"s (i.e., beginnings of the intervals);
|
||||
the column with data is "total_orders"
|
||||
"""
|
||||
if self._data is None:
|
||||
self._data = self.aggregate_orders()
|
||||
|
||||
return self._data
|
||||
|
||||
def aggregate_orders(self) -> pd.DataFrame: # pragma: no cover
|
||||
"""Generate and load all order totals from the database."""
|
||||
# `data` is probably missing "pixel_id"-"start_at" pairs.
|
||||
# This happens when there is no demand in the `Pixel` in the given `time_step`.
|
||||
data = pd.read_sql_query(
|
||||
f"""-- # noqa:E501,WPS221
|
||||
SELECT
|
||||
pixel_id,
|
||||
placed_at_without_seconds - minutes_to_be_cut AS start_at
|
||||
start_at,
|
||||
COUNT(*) AS total_orders
|
||||
FROM (
|
||||
SELECT
|
||||
pixels.pixel_id,
|
||||
DATE_TRUNC('MINUTE', orders.placed_at) AS placed_at_without_seconds,
|
||||
((
|
||||
EXTRACT(MINUTES FROM orders.placed_at)::INTEGER % {time_step}
|
||||
)::TEXT || ' MINUTES')::INTERVAL
|
||||
AS minutes_to_be_cut
|
||||
pixel_id,
|
||||
placed_at_without_seconds - minutes_to_be_cut AS start_at
|
||||
FROM (
|
||||
SELECT
|
||||
id,
|
||||
placed_at,
|
||||
pickup_address_id
|
||||
FROM
|
||||
{config.CLEAN_SCHEMA}.orders
|
||||
pixels.pixel_id,
|
||||
DATE_TRUNC('MINUTE', orders.placed_at) AS placed_at_without_seconds,
|
||||
((
|
||||
EXTRACT(MINUTES FROM orders.placed_at)::INTEGER % {self._time_step}
|
||||
)::TEXT || ' MINUTES')::INTERVAL
|
||||
AS minutes_to_be_cut
|
||||
FROM (
|
||||
SELECT
|
||||
id,
|
||||
placed_at,
|
||||
pickup_address_id
|
||||
FROM
|
||||
{config.CLEAN_SCHEMA}.orders
|
||||
INNER JOIN (
|
||||
SELECT
|
||||
id AS address_id
|
||||
FROM
|
||||
{config.CLEAN_SCHEMA}.addresses
|
||||
WHERE
|
||||
city_id = {self._grid.city.id}
|
||||
) AS in_city
|
||||
ON orders.pickup_address_id = in_city.address_id
|
||||
WHERE
|
||||
ad_hoc IS TRUE
|
||||
) AS
|
||||
orders
|
||||
INNER JOIN (
|
||||
SELECT
|
||||
id AS address_id
|
||||
address_id,
|
||||
pixel_id
|
||||
FROM
|
||||
{config.CLEAN_SCHEMA}.addresses
|
||||
{config.CLEAN_SCHEMA}.addresses_pixels
|
||||
WHERE
|
||||
city_id = {grid.city.id}
|
||||
) AS in_city
|
||||
ON orders.pickup_address_id = in_city.address_id
|
||||
WHERE
|
||||
ad_hoc IS TRUE
|
||||
) AS
|
||||
orders
|
||||
INNER JOIN (
|
||||
SELECT
|
||||
address_id,
|
||||
pixel_id
|
||||
FROM
|
||||
{config.CLEAN_SCHEMA}.addresses_pixels
|
||||
WHERE
|
||||
grid_id = {grid.id}
|
||||
AND
|
||||
city_id = {grid.city.id} -- city_id is redundant -> sanity check
|
||||
) AS pixels
|
||||
ON orders.pickup_address_id = pixels.address_id
|
||||
) AS placed_at_aggregated_into_start_at
|
||||
) AS pixel_start_at_combinations
|
||||
GROUP BY
|
||||
pixel_id,
|
||||
start_at
|
||||
ORDER BY
|
||||
pixel_id,
|
||||
start_at;
|
||||
""",
|
||||
con=db.connection,
|
||||
index_col=['pixel_id', 'start_at'],
|
||||
)
|
||||
grid_id = {self._grid.id}
|
||||
AND
|
||||
city_id = {self._grid.city.id} -- redundant -> sanity check
|
||||
) AS pixels
|
||||
ON orders.pickup_address_id = pixels.address_id
|
||||
) AS placed_at_aggregated_into_start_at
|
||||
) AS pixel_start_at_combinations
|
||||
GROUP BY
|
||||
pixel_id,
|
||||
start_at
|
||||
ORDER BY
|
||||
pixel_id,
|
||||
start_at;
|
||||
""",
|
||||
con=db.connection,
|
||||
index_col=['pixel_id', 'start_at'],
|
||||
)
|
||||
|
||||
if data.empty:
|
||||
return data
|
||||
if data.empty:
|
||||
return data
|
||||
|
||||
# Calculate the first and last "start_at" value ...
|
||||
start_day = data.index.levels[1].min().date()
|
||||
start = datetime.datetime(
|
||||
start_day.year, start_day.month, start_day.day, config.SERVICE_START,
|
||||
)
|
||||
end_day = data.index.levels[1].max().date()
|
||||
end = datetime.datetime(
|
||||
end_day.year, end_day.month, end_day.day, config.SERVICE_END,
|
||||
)
|
||||
# Calculate the first and last "start_at" value ...
|
||||
start_day = data.index.levels[1].min().date()
|
||||
start = dt.datetime(
|
||||
start_day.year, start_day.month, start_day.day, config.SERVICE_START,
|
||||
)
|
||||
end_day = data.index.levels[1].max().date()
|
||||
end = dt.datetime(end_day.year, end_day.month, end_day.day, config.SERVICE_END)
|
||||
# ... and all possible `tuple`s of "pixel_id"-"start_at" combinations.
|
||||
# The "start_at" values must lie within the operating hours.
|
||||
gen = (
|
||||
(pixel_id, start_at)
|
||||
for pixel_id in sorted(data.index.levels[0])
|
||||
for start_at in pd.date_range(start, end, freq=f'{self._time_step}T')
|
||||
if config.SERVICE_START <= start_at.hour < config.SERVICE_END
|
||||
)
|
||||
|
||||
# ... and all possible `tuple`s of "pixel_id"-"start_at" combinations.
|
||||
# The "start_at" values must lie within the operating hours.
|
||||
gen = (
|
||||
(pixel_id, start_at)
|
||||
for pixel_id in sorted(data.index.levels[0])
|
||||
for start_at in pd.date_range(start, end, freq=f'{time_step}T')
|
||||
if config.SERVICE_START <= start_at.time().hour < config.SERVICE_END
|
||||
)
|
||||
# Re-index `data` filling in `0`s where there is no demand.
|
||||
index = pd.MultiIndex.from_tuples(gen)
|
||||
index.names = ['pixel_id', 'start_at']
|
||||
|
||||
# Re-index `data` filling in `0`s where there is no demand.
|
||||
index = pd.MultiIndex.from_tuples(gen)
|
||||
index.names = ['pixel_id', 'start_at']
|
||||
|
||||
return data.reindex(index, fill_value=0)
|
||||
return data.reindex(index, fill_value=0)
|
||||
|
|
10
tests/config.py
Normal file
10
tests/config.py
Normal file
|
@ -0,0 +1,10 @@
|
|||
"""Globals used when testing."""
|
||||
|
||||
|
||||
# The day on which most test cases take place.
|
||||
YEAR, MONTH, DAY = 2016, 7, 1
|
||||
|
||||
# Default time steps, for example, for `OrderHistory` objects.
|
||||
LONG_TIME_STEP = 60
|
||||
SHORT_TIME_STEP = 30
|
||||
TIME_STEPS = (SHORT_TIME_STEP, LONG_TIME_STEP)
|
|
@ -9,6 +9,7 @@ import faker
|
|||
from factory import alchemy
|
||||
from geopy import distance
|
||||
|
||||
from tests import config as test_config
|
||||
from urban_meal_delivery import db
|
||||
|
||||
|
||||
|
@ -27,13 +28,10 @@ def _random_timespan( # noqa:WPS211
|
|||
return dt.timedelta(seconds=random.randint(total_min_seconds, total_max_seconds))
|
||||
|
||||
|
||||
# The test day.
|
||||
_YEAR, _MONTH, _DAY = 2020, 1, 1
|
||||
|
||||
|
||||
def _early_in_the_morning():
|
||||
"""A randomized `datetime` object early in the morning."""
|
||||
return dt.datetime(_YEAR, _MONTH, _DAY, 3, 0) + _random_timespan(max_hours=2)
|
||||
early = dt.datetime(test_config.YEAR, test_config.MONTH, test_config.DAY, 3, 0)
|
||||
return early + _random_timespan(max_hours=2)
|
||||
|
||||
|
||||
class AddressFactory(alchemy.SQLAlchemyModelFactory):
|
||||
|
@ -171,7 +169,9 @@ class AdHocOrderFactory(alchemy.SQLAlchemyModelFactory):
|
|||
# Attributes regarding the specialization of an `Order`: ad-hoc or scheduled.
|
||||
# Ad-hoc `Order`s are placed between 11.45 and 14.15.
|
||||
placed_at = factory.LazyFunction(
|
||||
lambda: dt.datetime(_YEAR, _MONTH, _DAY, 11, 45)
|
||||
lambda: dt.datetime(
|
||||
test_config.YEAR, test_config.MONTH, test_config.DAY, 11, 45,
|
||||
)
|
||||
+ _random_timespan(max_hours=2, max_minutes=30),
|
||||
)
|
||||
ad_hoc = True
|
||||
|
@ -337,13 +337,27 @@ class ScheduledOrderFactory(AdHocOrderFactory):
|
|||
scheduled_delivery_at = factory.LazyFunction(
|
||||
lambda: random.choice(
|
||||
[
|
||||
dt.datetime(_YEAR, _MONTH, _DAY, 12, 0),
|
||||
dt.datetime(_YEAR, _MONTH, _DAY, 12, 15),
|
||||
dt.datetime(_YEAR, _MONTH, _DAY, 12, 30),
|
||||
dt.datetime(_YEAR, _MONTH, _DAY, 12, 45),
|
||||
dt.datetime(_YEAR, _MONTH, _DAY, 13, 0),
|
||||
dt.datetime(_YEAR, _MONTH, _DAY, 13, 15),
|
||||
dt.datetime(_YEAR, _MONTH, _DAY, 13, 30),
|
||||
dt.datetime(
|
||||
test_config.YEAR, test_config.MONTH, test_config.DAY, 12, 0,
|
||||
),
|
||||
dt.datetime(
|
||||
test_config.YEAR, test_config.MONTH, test_config.DAY, 12, 15,
|
||||
),
|
||||
dt.datetime(
|
||||
test_config.YEAR, test_config.MONTH, test_config.DAY, 12, 30,
|
||||
),
|
||||
dt.datetime(
|
||||
test_config.YEAR, test_config.MONTH, test_config.DAY, 12, 45,
|
||||
),
|
||||
dt.datetime(
|
||||
test_config.YEAR, test_config.MONTH, test_config.DAY, 13, 0,
|
||||
),
|
||||
dt.datetime(
|
||||
test_config.YEAR, test_config.MONTH, test_config.DAY, 13, 15,
|
||||
),
|
||||
dt.datetime(
|
||||
test_config.YEAR, test_config.MONTH, test_config.DAY, 13, 30,
|
||||
),
|
||||
],
|
||||
),
|
||||
)
|
||||
|
|
1
tests/forecasts/timify/__init__.py
Normal file
1
tests/forecasts/timify/__init__.py
Normal file
|
@ -0,0 +1 @@
|
|||
"""Tests for the `urban_meal_delivery.forecasts.timify` module."""
|
|
@ -1,22 +1,20 @@
|
|||
"""Test the time series related code."""
|
||||
"""Test the `OrderHistory.aggregate_orders()` method."""
|
||||
# pylint:disable=no-self-use,unused-argument
|
||||
|
||||
import datetime
|
||||
|
||||
import pytest
|
||||
|
||||
from tests import config as test_config
|
||||
from urban_meal_delivery import db
|
||||
from urban_meal_delivery.forecasts import timify
|
||||
|
||||
|
||||
YEAR, MONTH, DAY = 2020, 1, 1
|
||||
|
||||
|
||||
@pytest.mark.db
|
||||
class TestAggregateOrders:
|
||||
"""Test the `aggregate_orders()` function.
|
||||
"""Test the `OrderHistory.aggregate_orders()` method.
|
||||
|
||||
The test cases are all integration tests that model realistic scenarios.
|
||||
The test cases are integration tests that model realistic scenarios.
|
||||
"""
|
||||
|
||||
@pytest.fixture
|
||||
|
@ -39,10 +37,13 @@ class TestAggregateOrders:
|
|||
def test_no_orders(self, db_session, one_pixel_grid, restaurant):
|
||||
"""Edge case that does not occur for real-life data."""
|
||||
db_session.commit()
|
||||
|
||||
assert len(restaurant.orders) == 0 # noqa:WPS507 sanity check
|
||||
|
||||
result = timify.aggregate_orders(grid=one_pixel_grid, time_step=60)
|
||||
oh = timify.OrderHistory(
|
||||
grid=one_pixel_grid, time_step=test_config.LONG_TIME_STEP,
|
||||
)
|
||||
|
||||
result = oh.aggregate_orders()
|
||||
|
||||
assert len(result) == 0 # noqa:WPS507
|
||||
|
||||
|
@ -55,7 +56,9 @@ class TestAggregateOrders:
|
|||
order = make_order(
|
||||
scheduled=False,
|
||||
restaurant=restaurant,
|
||||
placed_at=datetime.datetime(YEAR, MONTH, DAY, hour, 11),
|
||||
placed_at=datetime.datetime(
|
||||
test_config.YEAR, test_config.MONTH, test_config.DAY, hour, 11,
|
||||
),
|
||||
)
|
||||
db_session.add(order)
|
||||
|
||||
|
@ -63,7 +66,11 @@ class TestAggregateOrders:
|
|||
|
||||
assert len(restaurant.orders) == 12 # sanity check
|
||||
|
||||
result = timify.aggregate_orders(grid=one_pixel_grid, time_step=60)
|
||||
oh = timify.OrderHistory(
|
||||
grid=one_pixel_grid, time_step=test_config.LONG_TIME_STEP,
|
||||
)
|
||||
|
||||
result = oh.aggregate_orders()
|
||||
|
||||
# The resulting `DataFrame` has 12 rows holding `1`s.
|
||||
assert len(result) == 12
|
||||
|
@ -80,7 +87,9 @@ class TestAggregateOrders:
|
|||
order = make_order(
|
||||
scheduled=False,
|
||||
restaurant=restaurant,
|
||||
placed_at=datetime.datetime(YEAR, MONTH, DAY, hour, 11),
|
||||
placed_at=datetime.datetime(
|
||||
test_config.YEAR, test_config.MONTH, test_config.DAY, hour, 11,
|
||||
),
|
||||
)
|
||||
db_session.add(order)
|
||||
|
||||
|
@ -88,7 +97,11 @@ class TestAggregateOrders:
|
|||
|
||||
assert len(restaurant.orders) == 10 # sanity check
|
||||
|
||||
result = timify.aggregate_orders(grid=one_pixel_grid, time_step=60)
|
||||
oh = timify.OrderHistory(
|
||||
grid=one_pixel_grid, time_step=test_config.LONG_TIME_STEP,
|
||||
)
|
||||
|
||||
result = oh.aggregate_orders()
|
||||
|
||||
# Even though there are only 10 orders, there are 12 rows in the `DataFrame`.
|
||||
# That is so as `0`s are filled in for hours without any demand at the end.
|
||||
|
@ -107,7 +120,9 @@ class TestAggregateOrders:
|
|||
order = make_order(
|
||||
scheduled=False,
|
||||
restaurant=restaurant,
|
||||
placed_at=datetime.datetime(YEAR, MONTH, DAY, hour, 11),
|
||||
placed_at=datetime.datetime(
|
||||
test_config.YEAR, test_config.MONTH, test_config.DAY, hour, 11,
|
||||
),
|
||||
)
|
||||
db_session.add(order)
|
||||
|
||||
|
@ -115,7 +130,11 @@ class TestAggregateOrders:
|
|||
|
||||
assert len(restaurant.orders) == 6 # sanity check
|
||||
|
||||
result = timify.aggregate_orders(grid=one_pixel_grid, time_step=60)
|
||||
oh = timify.OrderHistory(
|
||||
grid=one_pixel_grid, time_step=test_config.LONG_TIME_STEP,
|
||||
)
|
||||
|
||||
result = oh.aggregate_orders()
|
||||
|
||||
# The resulting `DataFrame` has 12 rows, 6 holding `0`s, and 6 holding `1`s.
|
||||
assert len(result) == 12
|
||||
|
@ -133,15 +152,21 @@ class TestAggregateOrders:
|
|||
ad_hoc_order = make_order(
|
||||
scheduled=False,
|
||||
restaurant=restaurant,
|
||||
placed_at=datetime.datetime(YEAR, MONTH, DAY, 11, 11),
|
||||
placed_at=datetime.datetime(
|
||||
test_config.YEAR, test_config.MONTH, test_config.DAY, 11, 11,
|
||||
),
|
||||
)
|
||||
db_session.add(ad_hoc_order)
|
||||
|
||||
pre_order = make_order(
|
||||
scheduled=True,
|
||||
restaurant=restaurant,
|
||||
placed_at=datetime.datetime(YEAR, MONTH, DAY, 9, 0),
|
||||
scheduled_delivery_at=datetime.datetime(YEAR, MONTH, DAY, 12, 0),
|
||||
placed_at=datetime.datetime(
|
||||
test_config.YEAR, test_config.MONTH, test_config.DAY, 9, 0,
|
||||
),
|
||||
scheduled_delivery_at=datetime.datetime(
|
||||
test_config.YEAR, test_config.MONTH, test_config.DAY, 12, 0,
|
||||
),
|
||||
)
|
||||
db_session.add(pre_order)
|
||||
|
||||
|
@ -149,7 +174,11 @@ class TestAggregateOrders:
|
|||
|
||||
assert len(restaurant.orders) == 2 # sanity check
|
||||
|
||||
result = timify.aggregate_orders(grid=one_pixel_grid, time_step=60)
|
||||
oh = timify.OrderHistory(
|
||||
grid=one_pixel_grid, time_step=test_config.LONG_TIME_STEP,
|
||||
)
|
||||
|
||||
result = oh.aggregate_orders()
|
||||
|
||||
# The resulting `DataFrame` has 12 rows, 11 holding `0`s, and one holding a `1`.
|
||||
assert len(result) == 12
|
||||
|
@ -169,7 +198,9 @@ class TestAggregateOrders:
|
|||
order = make_order(
|
||||
scheduled=False,
|
||||
restaurant=restaurant,
|
||||
placed_at=datetime.datetime(YEAR, MONTH, DAY, hour, 11),
|
||||
placed_at=datetime.datetime(
|
||||
test_config.YEAR, test_config.MONTH, test_config.DAY, hour, 11,
|
||||
),
|
||||
)
|
||||
db_session.add(order)
|
||||
|
||||
|
@ -177,7 +208,11 @@ class TestAggregateOrders:
|
|||
|
||||
assert len(restaurant.orders) == 12 # sanity check
|
||||
|
||||
result = timify.aggregate_orders(grid=one_pixel_grid, time_step=30)
|
||||
oh = timify.OrderHistory(
|
||||
grid=one_pixel_grid, time_step=test_config.SHORT_TIME_STEP,
|
||||
)
|
||||
|
||||
result = oh.aggregate_orders()
|
||||
|
||||
# The resulting `DataFrame` has 24 rows for the 24 30-minute time steps.
|
||||
# The rows' values are `0` and `1` alternating.
|
||||
|
@ -200,7 +235,9 @@ class TestAggregateOrders:
|
|||
order = make_order(
|
||||
scheduled=False,
|
||||
restaurant=restaurant,
|
||||
placed_at=datetime.datetime(YEAR, MONTH, DAY, hour, 11),
|
||||
placed_at=datetime.datetime(
|
||||
test_config.YEAR, test_config.MONTH, test_config.DAY, hour, 11,
|
||||
),
|
||||
)
|
||||
db_session.add(order)
|
||||
|
||||
|
@ -210,7 +247,11 @@ class TestAggregateOrders:
|
|||
scheduled=False,
|
||||
restaurant=restaurant,
|
||||
placed_at=datetime.datetime(
|
||||
YEAR, MONTH, DAY + 1, hour, 11, # noqa:WPS441
|
||||
test_config.YEAR,
|
||||
test_config.MONTH,
|
||||
test_config.DAY + 1,
|
||||
hour, # noqa:WPS441
|
||||
11,
|
||||
),
|
||||
)
|
||||
db_session.add(order)
|
||||
|
@ -219,7 +260,11 @@ class TestAggregateOrders:
|
|||
|
||||
assert len(restaurant.orders) == 18 # sanity check
|
||||
|
||||
result = timify.aggregate_orders(grid=one_pixel_grid, time_step=60)
|
||||
oh = timify.OrderHistory(
|
||||
grid=one_pixel_grid, time_step=test_config.LONG_TIME_STEP,
|
||||
)
|
||||
|
||||
result = oh.aggregate_orders()
|
||||
|
||||
# The resulting `DataFrame` has 24 rows, 12 for each day.
|
||||
assert len(result) == 24
|
||||
|
@ -270,7 +315,9 @@ class TestAggregateOrders:
|
|||
order = make_order(
|
||||
scheduled=False,
|
||||
restaurant=restaurant1,
|
||||
placed_at=datetime.datetime(YEAR, MONTH, DAY, hour, 11),
|
||||
placed_at=datetime.datetime(
|
||||
test_config.YEAR, test_config.MONTH, test_config.DAY, hour, 11,
|
||||
),
|
||||
)
|
||||
db_session.add(order)
|
||||
|
||||
|
@ -279,14 +326,26 @@ class TestAggregateOrders:
|
|||
order = make_order(
|
||||
scheduled=False,
|
||||
restaurant=restaurant2,
|
||||
placed_at=datetime.datetime(YEAR, MONTH, DAY, hour, 13), # noqa:WPS441
|
||||
placed_at=datetime.datetime(
|
||||
test_config.YEAR,
|
||||
test_config.MONTH,
|
||||
test_config.DAY,
|
||||
hour, # noqa:WPS441
|
||||
13,
|
||||
),
|
||||
)
|
||||
db_session.add(order)
|
||||
|
||||
order = make_order(
|
||||
scheduled=False,
|
||||
restaurant=restaurant2,
|
||||
placed_at=datetime.datetime(YEAR, MONTH, DAY, hour, 14), # noqa:WPS441
|
||||
placed_at=datetime.datetime(
|
||||
test_config.YEAR,
|
||||
test_config.MONTH,
|
||||
test_config.DAY,
|
||||
hour, # noqa:WPS441
|
||||
14,
|
||||
),
|
||||
)
|
||||
db_session.add(order)
|
||||
|
||||
|
@ -296,7 +355,11 @@ class TestAggregateOrders:
|
|||
assert len(restaurant1.orders) == 6
|
||||
assert len(restaurant2.orders) == 24
|
||||
|
||||
result = timify.aggregate_orders(grid=two_pixel_grid, time_step=60)
|
||||
oh = timify.OrderHistory(
|
||||
grid=two_pixel_grid, time_step=test_config.LONG_TIME_STEP,
|
||||
)
|
||||
|
||||
result = oh.aggregate_orders()
|
||||
|
||||
# The resulting `DataFrame` has 24 rows, 12 for each pixel.
|
||||
assert len(result) == 24
|
39
tests/forecasts/timify/test_order_history.py
Normal file
39
tests/forecasts/timify/test_order_history.py
Normal file
|
@ -0,0 +1,39 @@
|
|||
"""Test the basic functionalities in the `OrderHistory` class."""
|
||||
# pylint:disable=no-self-use
|
||||
|
||||
import pytest
|
||||
|
||||
from tests import config as test_config
|
||||
from urban_meal_delivery.forecasts import timify
|
||||
|
||||
|
||||
class TestSpecialMethods:
|
||||
"""Test the special methods in `OrderHistory`."""
|
||||
|
||||
@pytest.mark.parametrize('time_step', test_config.TIME_STEPS)
|
||||
def test_instantiate(self, grid, time_step):
|
||||
"""Test `OrderHistory.__init__()`."""
|
||||
oh = timify.OrderHistory(grid=grid, time_step=time_step)
|
||||
|
||||
assert oh is not None
|
||||
|
||||
|
||||
class TestProperties:
|
||||
"""Test the properties in `OrderHistory`."""
|
||||
|
||||
def test_totals_is_cached(self, grid, monkeypatch):
|
||||
"""Test `.totals` property.
|
||||
|
||||
The result of the `OrderHistory.aggregate_orders()` method call
|
||||
is cached in the `OrderHistory.totals` property.
|
||||
"""
|
||||
oh = timify.OrderHistory(grid=grid, time_step=test_config.LONG_TIME_STEP)
|
||||
|
||||
sentinel = object()
|
||||
monkeypatch.setattr(oh, 'aggregate_orders', lambda: sentinel)
|
||||
|
||||
result1 = oh.totals
|
||||
result2 = oh.totals
|
||||
|
||||
assert result1 is result2
|
||||
assert result1 is sentinel
|
Loading…
Reference in a new issue