Alexander Hess
65d1632e98
- the main purpose of this class is to manage querying the order totals from the database and slice various kinds of time series out of the data - the class holds the former `aggregate_orders()` function as a method - modularize the corresponding tests - add `tests.config` with globals used when testing to provide a single source of truth for various settings
380 lines
14 KiB
Python
380 lines
14 KiB
Python
"""Factories to create instances for the SQLAlchemy models."""
|
|
|
|
import datetime as dt
|
|
import random
|
|
import string
|
|
|
|
import factory
|
|
import faker
|
|
from factory import alchemy
|
|
from geopy import distance
|
|
|
|
from tests import config as test_config
|
|
from urban_meal_delivery import db
|
|
|
|
|
|
def _random_timespan( # noqa:WPS211
|
|
*,
|
|
min_hours=0,
|
|
min_minutes=0,
|
|
min_seconds=0,
|
|
max_hours=0,
|
|
max_minutes=0,
|
|
max_seconds=0,
|
|
):
|
|
"""A randomized `timedelta` object between the specified arguments."""
|
|
total_min_seconds = min_hours * 3600 + min_minutes * 60 + min_seconds
|
|
total_max_seconds = max_hours * 3600 + max_minutes * 60 + max_seconds
|
|
return dt.timedelta(seconds=random.randint(total_min_seconds, total_max_seconds))
|
|
|
|
|
|
def _early_in_the_morning():
|
|
"""A randomized `datetime` object early in the morning."""
|
|
early = dt.datetime(test_config.YEAR, test_config.MONTH, test_config.DAY, 3, 0)
|
|
return early + _random_timespan(max_hours=2)
|
|
|
|
|
|
class AddressFactory(alchemy.SQLAlchemyModelFactory):
|
|
"""Create instances of the `db.Address` model."""
|
|
|
|
class Meta:
|
|
model = db.Address
|
|
sqlalchemy_get_or_create = ('id',)
|
|
|
|
id = factory.Sequence(lambda num: num) # noqa:WPS125
|
|
created_at = factory.LazyFunction(_early_in_the_morning)
|
|
|
|
# When testing, all addresses are considered primary ones.
|
|
# As non-primary addresses have no different behavior and
|
|
# the property is only kept from the original dataset for
|
|
# completeness sake, that is ok to do.
|
|
_primary_id = factory.LazyAttribute(lambda obj: obj.id)
|
|
|
|
# Mimic a Google Maps Place ID with just random characters.
|
|
place_id = factory.LazyFunction(
|
|
lambda: ''.join(random.choice(string.ascii_lowercase) for _ in range(20)),
|
|
)
|
|
|
|
# Place the addresses somewhere in downtown Paris.
|
|
latitude = factory.Faker('coordinate', center=48.855, radius=0.01)
|
|
longitude = factory.Faker('coordinate', center=2.34, radius=0.03)
|
|
# city -> set by the `make_address` fixture as there is only one `city`
|
|
city_name = 'Paris'
|
|
zip_code = factory.LazyFunction(lambda: random.randint(75001, 75020))
|
|
street = factory.Faker('street_address', locale='fr_FR')
|
|
|
|
|
|
class CourierFactory(alchemy.SQLAlchemyModelFactory):
|
|
"""Create instances of the `db.Courier` model."""
|
|
|
|
class Meta:
|
|
model = db.Courier
|
|
sqlalchemy_get_or_create = ('id',)
|
|
|
|
id = factory.Sequence(lambda num: num) # noqa:WPS125
|
|
created_at = factory.LazyFunction(_early_in_the_morning)
|
|
vehicle = 'bicycle'
|
|
historic_speed = 7.89
|
|
capacity = 100
|
|
pay_per_hour = 750
|
|
pay_per_order = 200
|
|
|
|
|
|
class CustomerFactory(alchemy.SQLAlchemyModelFactory):
|
|
"""Create instances of the `db.Customer` model."""
|
|
|
|
class Meta:
|
|
model = db.Customer
|
|
sqlalchemy_get_or_create = ('id',)
|
|
|
|
id = factory.Sequence(lambda num: num) # noqa:WPS125
|
|
|
|
|
|
_restaurant_names = faker.Faker()
|
|
|
|
|
|
class RestaurantFactory(alchemy.SQLAlchemyModelFactory):
|
|
"""Create instances of the `db.Restaurant` model."""
|
|
|
|
class Meta:
|
|
model = db.Restaurant
|
|
sqlalchemy_get_or_create = ('id',)
|
|
|
|
id = factory.Sequence(lambda num: num) # noqa:WPS125
|
|
created_at = factory.LazyFunction(_early_in_the_morning)
|
|
name = factory.LazyFunction(
|
|
lambda: f"{_restaurant_names.first_name()}'s Restaurant",
|
|
)
|
|
# address -> set by the `make_restaurant` fixture as there is only one `city`
|
|
estimated_prep_duration = 1000
|
|
|
|
|
|
class AdHocOrderFactory(alchemy.SQLAlchemyModelFactory):
|
|
"""Create instances of the `db.Order` model.
|
|
|
|
This factory creates ad-hoc `Order`s while the `ScheduledOrderFactory`
|
|
below creates pre-orders. They are split into two classes mainly
|
|
because the logic regarding how the timestamps are calculated from
|
|
each other differs.
|
|
|
|
See the docstring in the contained `Params` class for
|
|
flags to adapt how the `Order` is created.
|
|
"""
|
|
|
|
# pylint:disable=too-many-instance-attributes
|
|
|
|
class Meta:
|
|
model = db.Order
|
|
sqlalchemy_get_or_create = ('id',)
|
|
|
|
class Params:
|
|
"""Define flags that overwrite some attributes.
|
|
|
|
The `factory.Trait` objects in this class are executed after all
|
|
the normal attributes in the `OrderFactory` classes were evaluated.
|
|
|
|
Flags:
|
|
cancel_before_pickup
|
|
cancel_after_pickup
|
|
"""
|
|
|
|
# Timestamps after `cancelled_at` are discarded
|
|
# by the `post_generation` hook at the end of the `OrderFactory`.
|
|
cancel_ = factory.Trait( # noqa:WPS120 -> leading underscore does not work
|
|
cancelled=True, cancelled_at_corrected=False,
|
|
)
|
|
cancel_before_pickup = factory.Trait(
|
|
cancel_=True,
|
|
cancelled_at=factory.LazyAttribute(
|
|
lambda obj: obj.dispatch_at
|
|
+ _random_timespan(
|
|
max_seconds=(obj.pickup_at - obj.dispatch_at).total_seconds(),
|
|
),
|
|
),
|
|
)
|
|
cancel_after_pickup = factory.Trait(
|
|
cancel_=True,
|
|
cancelled_at=factory.LazyAttribute(
|
|
lambda obj: obj.pickup_at
|
|
+ _random_timespan(
|
|
max_seconds=(obj.delivery_at - obj.pickup_at).total_seconds(),
|
|
),
|
|
),
|
|
)
|
|
|
|
# Generic attributes
|
|
id = factory.Sequence(lambda num: num) # noqa:WPS125
|
|
# customer -> set by the `make_order` fixture for better control
|
|
|
|
# Attributes regarding the specialization of an `Order`: ad-hoc or scheduled.
|
|
# Ad-hoc `Order`s are placed between 11.45 and 14.15.
|
|
placed_at = factory.LazyFunction(
|
|
lambda: dt.datetime(
|
|
test_config.YEAR, test_config.MONTH, test_config.DAY, 11, 45,
|
|
)
|
|
+ _random_timespan(max_hours=2, max_minutes=30),
|
|
)
|
|
ad_hoc = True
|
|
scheduled_delivery_at = None
|
|
scheduled_delivery_at_corrected = None
|
|
# Without statistical info, we assume an ad-hoc `Order` delivered after 45 minutes.
|
|
first_estimated_delivery_at = factory.LazyAttribute(
|
|
lambda obj: obj.placed_at + dt.timedelta(minutes=45),
|
|
)
|
|
|
|
# Attributes regarding the cancellation of an `Order`.
|
|
# May be overwritten with the `cancel_before_pickup` or `cancel_after_pickup` flags.
|
|
cancelled = False
|
|
cancelled_at = None
|
|
cancelled_at_corrected = None
|
|
|
|
# Price-related attributes -> sample realistic prices
|
|
sub_total = factory.LazyFunction(lambda: 100 * random.randint(15, 25))
|
|
delivery_fee = 250
|
|
total = factory.LazyAttribute(lambda obj: obj.sub_total + obj.delivery_fee)
|
|
|
|
# Restaurant-related attributes
|
|
# restaurant -> set by the `make_order` fixture for better control
|
|
restaurant_notified_at = factory.LazyAttribute(
|
|
lambda obj: obj.placed_at + _random_timespan(min_seconds=30, max_seconds=90),
|
|
)
|
|
restaurant_notified_at_corrected = False
|
|
restaurant_confirmed_at = factory.LazyAttribute(
|
|
lambda obj: obj.restaurant_notified_at
|
|
+ _random_timespan(min_seconds=30, max_seconds=150),
|
|
)
|
|
restaurant_confirmed_at_corrected = False
|
|
# Use the database defaults of the historic data.
|
|
estimated_prep_duration = 900
|
|
estimated_prep_duration_corrected = False
|
|
estimated_prep_buffer = 480
|
|
|
|
# Dispatch-related columns
|
|
# courier -> set by the `make_order` fixture for better control
|
|
dispatch_at = factory.LazyAttribute(
|
|
lambda obj: obj.placed_at + _random_timespan(min_seconds=600, max_seconds=1080),
|
|
)
|
|
dispatch_at_corrected = False
|
|
courier_notified_at = factory.LazyAttribute(
|
|
lambda obj: obj.dispatch_at
|
|
+ _random_timespan(min_seconds=100, max_seconds=140),
|
|
)
|
|
courier_notified_at_corrected = False
|
|
courier_accepted_at = factory.LazyAttribute(
|
|
lambda obj: obj.courier_notified_at
|
|
+ _random_timespan(min_seconds=15, max_seconds=45),
|
|
)
|
|
courier_accepted_at_corrected = False
|
|
# Sample a realistic utilization.
|
|
utilization = factory.LazyFunction(lambda: random.choice([50, 60, 70, 80, 90, 100]))
|
|
|
|
# Pickup-related attributes
|
|
# pickup_address -> aligned with `restaurant.address` by the `make_order` fixture
|
|
reached_pickup_at = factory.LazyAttribute(
|
|
lambda obj: obj.courier_accepted_at
|
|
+ _random_timespan(min_seconds=300, max_seconds=600),
|
|
)
|
|
pickup_at = factory.LazyAttribute(
|
|
lambda obj: obj.reached_pickup_at
|
|
+ _random_timespan(min_seconds=120, max_seconds=600),
|
|
)
|
|
pickup_at_corrected = False
|
|
pickup_not_confirmed = False
|
|
left_pickup_at = factory.LazyAttribute(
|
|
lambda obj: obj.pickup_at + _random_timespan(min_seconds=60, max_seconds=180),
|
|
)
|
|
left_pickup_at_corrected = False
|
|
|
|
# Delivery-related attributes
|
|
# delivery_address -> set by the `make_order` fixture as there is only one `city`
|
|
reached_delivery_at = factory.LazyAttribute(
|
|
lambda obj: obj.left_pickup_at
|
|
+ _random_timespan(min_seconds=240, max_seconds=480),
|
|
)
|
|
delivery_at = factory.LazyAttribute(
|
|
lambda obj: obj.reached_delivery_at
|
|
+ _random_timespan(min_seconds=240, max_seconds=660),
|
|
)
|
|
delivery_at_corrected = False
|
|
delivery_not_confirmed = False
|
|
_courier_waited_at_delivery = factory.LazyAttribute(
|
|
lambda obj: False if obj.delivery_at else None,
|
|
)
|
|
|
|
# Statistical attributes -> calculate realistic stats
|
|
logged_delivery_distance = factory.LazyAttribute(
|
|
lambda obj: distance.great_circle( # noqa:WPS317
|
|
(obj.pickup_address.latitude, obj.pickup_address.longitude),
|
|
(obj.delivery_address.latitude, obj.delivery_address.longitude),
|
|
).meters,
|
|
)
|
|
logged_avg_speed = factory.LazyAttribute( # noqa:ECE001
|
|
lambda obj: round(
|
|
(
|
|
obj.logged_avg_speed_distance
|
|
/ (obj.delivery_at - obj.pickup_at).total_seconds()
|
|
),
|
|
2,
|
|
),
|
|
)
|
|
logged_avg_speed_distance = factory.LazyAttribute(
|
|
lambda obj: 0.95 * obj.logged_delivery_distance,
|
|
)
|
|
|
|
@factory.post_generation
|
|
def post( # noqa:C901,WPS23 pylint:disable=unused-argument
|
|
obj, create, extracted, **kwargs, # noqa:B902,N805
|
|
):
|
|
"""Discard timestamps that occur after cancellation."""
|
|
if obj.cancelled:
|
|
if obj.cancelled_at <= obj.restaurant_notified_at:
|
|
obj.restaurant_notified_at = None
|
|
obj.restaurant_notified_at_corrected = None
|
|
if obj.cancelled_at <= obj.restaurant_confirmed_at:
|
|
obj.restaurant_confirmed_at = None
|
|
obj.restaurant_confirmed_at_corrected = None
|
|
if obj.cancelled_at <= obj.dispatch_at:
|
|
obj.dispatch_at = None
|
|
obj.dispatch_at_corrected = None
|
|
if obj.cancelled_at <= obj.courier_notified_at:
|
|
obj.courier_notified_at = None
|
|
obj.courier_notified_at_corrected = None
|
|
if obj.cancelled_at <= obj.courier_accepted_at:
|
|
obj.courier_accepted_at = None
|
|
obj.courier_accepted_at_corrected = None
|
|
if obj.cancelled_at <= obj.reached_pickup_at:
|
|
obj.reached_pickup_at = None
|
|
if obj.cancelled_at <= obj.pickup_at:
|
|
obj.pickup_at = None
|
|
obj.pickup_at_corrected = None
|
|
obj.pickup_not_confirmed = None
|
|
if obj.cancelled_at <= obj.left_pickup_at:
|
|
obj.left_pickup_at = None
|
|
obj.left_pickup_at_corrected = None
|
|
if obj.cancelled_at <= obj.reached_delivery_at:
|
|
obj.reached_delivery_at = None
|
|
if obj.cancelled_at <= obj.delivery_at:
|
|
obj.delivery_at = None
|
|
obj.delivery_at_corrected = None
|
|
obj.delivery_not_confirmed = None
|
|
obj._courier_waited_at_delivery = None
|
|
|
|
|
|
class ScheduledOrderFactory(AdHocOrderFactory):
|
|
"""Create instances of the `db.Order` model.
|
|
|
|
This class takes care of the various timestamps for pre-orders.
|
|
|
|
Pre-orders are placed long before the test day's lunch time starts.
|
|
All timestamps are relative to either `.dispatch_at` or `.restaurant_notified_at`
|
|
and calculated backwards from `.scheduled_delivery_at`.
|
|
"""
|
|
|
|
# Attributes regarding the specialization of an `Order`: ad-hoc or scheduled.
|
|
placed_at = factory.LazyFunction(_early_in_the_morning)
|
|
ad_hoc = False
|
|
# Discrete `datetime` objects in the "core" lunch time are enough.
|
|
scheduled_delivery_at = factory.LazyFunction(
|
|
lambda: random.choice(
|
|
[
|
|
dt.datetime(
|
|
test_config.YEAR, test_config.MONTH, test_config.DAY, 12, 0,
|
|
),
|
|
dt.datetime(
|
|
test_config.YEAR, test_config.MONTH, test_config.DAY, 12, 15,
|
|
),
|
|
dt.datetime(
|
|
test_config.YEAR, test_config.MONTH, test_config.DAY, 12, 30,
|
|
),
|
|
dt.datetime(
|
|
test_config.YEAR, test_config.MONTH, test_config.DAY, 12, 45,
|
|
),
|
|
dt.datetime(
|
|
test_config.YEAR, test_config.MONTH, test_config.DAY, 13, 0,
|
|
),
|
|
dt.datetime(
|
|
test_config.YEAR, test_config.MONTH, test_config.DAY, 13, 15,
|
|
),
|
|
dt.datetime(
|
|
test_config.YEAR, test_config.MONTH, test_config.DAY, 13, 30,
|
|
),
|
|
],
|
|
),
|
|
)
|
|
scheduled_delivery_at_corrected = False
|
|
# Assume the `Order` is on time.
|
|
first_estimated_delivery_at = factory.LazyAttribute(
|
|
lambda obj: obj.scheduled_delivery_at,
|
|
)
|
|
|
|
# Restaurant-related attributes
|
|
restaurant_notified_at = factory.LazyAttribute(
|
|
lambda obj: obj.scheduled_delivery_at
|
|
- _random_timespan(min_minutes=45, max_minutes=50),
|
|
)
|
|
|
|
# Dispatch-related attributes
|
|
dispatch_at = factory.LazyAttribute(
|
|
lambda obj: obj.scheduled_delivery_at
|
|
- _random_timespan(min_minutes=40, max_minutes=45),
|
|
)
|