Add OrderHistory.make_horizontal_time_series()
- the method slices out a horizontal time series from the data within an `OrderHistory` object
This commit is contained in:
parent
65d1632e98
commit
b61db734b6
3 changed files with 258 additions and 0 deletions
173
tests/forecasts/timify/test_make_time_series.py
Normal file
173
tests/forecasts/timify/test_make_time_series.py
Normal file
|
|
@ -0,0 +1,173 @@
|
|||
"""Test the time series related code."""
|
||||
# pylint:disable=no-self-use,unused-argument
|
||||
|
||||
import datetime
|
||||
|
||||
import pandas as pd
|
||||
import pytest
|
||||
|
||||
from tests import config as test_config
|
||||
from urban_meal_delivery import config
|
||||
from urban_meal_delivery.forecasts import timify
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def good_pixel_id():
|
||||
"""A `pixel_id` that is on the `grid`."""
|
||||
return 1
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def order_totals(good_pixel_id):
|
||||
"""A mock for `OrderHistory.totals`.
|
||||
|
||||
To be a bit more realistic, we sample two pixels on the `grid`.
|
||||
"""
|
||||
pixel_ids = [good_pixel_id, good_pixel_id + 1]
|
||||
|
||||
gen = (
|
||||
(pixel_id, start_at)
|
||||
for pixel_id in pixel_ids
|
||||
for start_at in pd.date_range(
|
||||
test_config.START, test_config.END, freq=f'{test_config.LONG_TIME_STEP}T',
|
||||
)
|
||||
if config.SERVICE_START <= start_at.hour < config.SERVICE_END
|
||||
)
|
||||
|
||||
# Re-index `data` filling in `0`s where there is no demand.
|
||||
index = pd.MultiIndex.from_tuples(gen)
|
||||
index.names = ['pixel_id', 'start_at']
|
||||
|
||||
df = pd.DataFrame(data={'total_orders': 0}, index=index)
|
||||
|
||||
# Sanity check: n_pixels * n_time_steps_per_day * n_weekdays * n_weeks.
|
||||
assert len(df) == 2 * 12 * (7 * 2 + 1)
|
||||
|
||||
return df
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def order_history(order_totals, grid):
|
||||
"""An `OrderHistory` object that does not need the database."""
|
||||
oh = timify.OrderHistory(grid=grid, time_step=test_config.LONG_TIME_STEP)
|
||||
oh._data = order_totals # pylint:disable=protected-access
|
||||
|
||||
return oh
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def good_predict_at():
|
||||
"""A `predict_at` within `START`-`END` and ...
|
||||
|
||||
... a long enough history so that either `train_horizon=1`
|
||||
or `train_horizon=2` works.
|
||||
"""
|
||||
return datetime.datetime(
|
||||
test_config.END.year, test_config.END.month, test_config.END.day, 12, 0,
|
||||
)
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def bad_predict_at():
|
||||
"""A `predict_at` within `START`-`END` but ...
|
||||
|
||||
... not a long enough history so that both `train_horizon=1`
|
||||
and `train_horizon=2` do not work.
|
||||
"""
|
||||
predict_day = test_config.END - datetime.timedelta(weeks=1, days=1)
|
||||
return datetime.datetime(
|
||||
predict_day.year, predict_day.month, predict_day.day, 12, 0,
|
||||
)
|
||||
|
||||
|
||||
class TestMakeHorizontalTimeSeries:
|
||||
"""Test the `OrderHistory.make_horizontal_time_series()` method."""
|
||||
|
||||
@pytest.mark.parametrize('train_horizon', test_config.TRAIN_HORIZONS)
|
||||
def test_wrong_pixel(self, order_history, good_predict_at, train_horizon):
|
||||
"""A `pixel_id` that is not in the `grid`."""
|
||||
with pytest.raises(LookupError):
|
||||
order_history.make_horizontal_time_series(
|
||||
pixel_id=999_999,
|
||||
predict_at=good_predict_at,
|
||||
train_horizon=train_horizon,
|
||||
)
|
||||
|
||||
@pytest.mark.parametrize('train_horizon', test_config.TRAIN_HORIZONS)
|
||||
def test_time_series_are_dataframes(
|
||||
self, order_history, good_pixel_id, good_predict_at, train_horizon,
|
||||
):
|
||||
"""The time series come in a one-column `pd.DataFrame`."""
|
||||
result = order_history.make_horizontal_time_series(
|
||||
pixel_id=good_pixel_id,
|
||||
predict_at=good_predict_at,
|
||||
train_horizon=train_horizon,
|
||||
)
|
||||
|
||||
training_df, _, actual_df = result
|
||||
|
||||
assert isinstance(training_df, pd.DataFrame)
|
||||
assert training_df.columns == ['total_orders']
|
||||
assert isinstance(actual_df, pd.DataFrame)
|
||||
assert actual_df.columns == ['total_orders']
|
||||
|
||||
@pytest.mark.parametrize('train_horizon', test_config.TRAIN_HORIZONS)
|
||||
def test_time_series_have_correct_length(
|
||||
self, order_history, good_pixel_id, good_predict_at, train_horizon,
|
||||
):
|
||||
"""The length of a training time series must be a multiple of `7` ...
|
||||
|
||||
whereas the time series with the actual order counts always holds `1` value.
|
||||
"""
|
||||
result = order_history.make_horizontal_time_series(
|
||||
pixel_id=good_pixel_id,
|
||||
predict_at=good_predict_at,
|
||||
train_horizon=train_horizon,
|
||||
)
|
||||
|
||||
training_df, _, actual_df = result
|
||||
|
||||
assert len(training_df) == 7 * train_horizon
|
||||
assert len(actual_df) == 1
|
||||
|
||||
@pytest.mark.parametrize('train_horizon', test_config.TRAIN_HORIZONS)
|
||||
def test_frequency_is_number_of_weekdays(
|
||||
self, order_history, good_pixel_id, good_predict_at, train_horizon,
|
||||
):
|
||||
"""The `frequency` must be `7`."""
|
||||
result = order_history.make_horizontal_time_series(
|
||||
pixel_id=good_pixel_id,
|
||||
predict_at=good_predict_at,
|
||||
train_horizon=train_horizon,
|
||||
)
|
||||
|
||||
_, frequency, _ = result # noqa:WPS434
|
||||
|
||||
assert frequency == 7
|
||||
|
||||
@pytest.mark.parametrize('train_horizon', test_config.TRAIN_HORIZONS)
|
||||
def test_no_long_enough_history1(
|
||||
self, order_history, good_pixel_id, bad_predict_at, train_horizon,
|
||||
):
|
||||
"""If the `predict_at` day is too early in the `START`-`END` horizon ...
|
||||
|
||||
... the history of order totals is not long enough.
|
||||
"""
|
||||
with pytest.raises(RuntimeError):
|
||||
order_history.make_horizontal_time_series(
|
||||
pixel_id=good_pixel_id,
|
||||
predict_at=bad_predict_at,
|
||||
train_horizon=train_horizon,
|
||||
)
|
||||
|
||||
def test_no_long_enough_history2(
|
||||
self, order_history, good_pixel_id, good_predict_at,
|
||||
):
|
||||
"""If the `train_horizon` is longer than the `START`-`END` horizon ...
|
||||
|
||||
... the history of order totals can never be long enough.
|
||||
"""
|
||||
with pytest.raises(RuntimeError):
|
||||
order_history.make_horizontal_time_series(
|
||||
pixel_id=good_pixel_id, predict_at=good_predict_at, train_horizon=999,
|
||||
)
|
||||
Loading…
Add table
Add a link
Reference in a new issue