Add OrderHistory.make_horizontal_time_series()
- the method slices out a horizontal time series from the data within an `OrderHistory` object
This commit is contained in:
parent
65d1632e98
commit
b61db734b6
3 changed files with 258 additions and 0 deletions
|
|
@ -1,6 +1,7 @@
|
||||||
"""Obtain and work with time series data."""
|
"""Obtain and work with time series data."""
|
||||||
|
|
||||||
import datetime as dt
|
import datetime as dt
|
||||||
|
from typing import Tuple
|
||||||
|
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
|
|
||||||
|
|
@ -145,3 +146,69 @@ class OrderHistory:
|
||||||
index.names = ['pixel_id', 'start_at']
|
index.names = ['pixel_id', 'start_at']
|
||||||
|
|
||||||
return data.reindex(index, fill_value=0)
|
return data.reindex(index, fill_value=0)
|
||||||
|
|
||||||
|
def make_horizontal_time_series( # noqa:WPS210
|
||||||
|
self, pixel_id: int, predict_at: dt.datetime, train_horizon: int,
|
||||||
|
) -> Tuple[pd.DataFrame, int, int]:
|
||||||
|
"""Slice a horizontal time series out of the `.totals`.
|
||||||
|
|
||||||
|
Create a time series covering `train_horizon` weeks that can be used
|
||||||
|
for training a forecasting model to predict the demand at `predict_at`.
|
||||||
|
|
||||||
|
For explanation of the terms "horizontal", "vertical", and "real-time"
|
||||||
|
in the context of time series, see section 3.2 in the following paper:
|
||||||
|
https://github.com/webartifex/urban-meal-delivery-demand-forecasting/blob/main/paper.pdf
|
||||||
|
|
||||||
|
Args:
|
||||||
|
pixel_id: pixel in which the time series is aggregated
|
||||||
|
predict_at: time step (i.e., "start_at") for which a prediction is made
|
||||||
|
train_horizon: weeks of historic data used to predict `predict_at`
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
training time series, frequency, actual order count at `predict_at`
|
||||||
|
|
||||||
|
Raises:
|
||||||
|
LookupError: `pixel_id` is not in the `grid`
|
||||||
|
RuntimeError: desired time series slice is not entirely in `.totals`
|
||||||
|
"""
|
||||||
|
try:
|
||||||
|
intra_pixel = self.totals.loc[pixel_id]
|
||||||
|
except KeyError:
|
||||||
|
raise LookupError('The `pixel_id` is not in the `grid`') from None
|
||||||
|
|
||||||
|
if predict_at >= config.CUTOFF_DAY: # pragma: no cover
|
||||||
|
raise RuntimeError('Internal error: cannot predict beyond the given data')
|
||||||
|
|
||||||
|
# The first and last training day are just before the `predict_at` day
|
||||||
|
# and span exactly `train_horizon` weeks covering only the times of the
|
||||||
|
# day equal to the hour/minute of `predict_at`.
|
||||||
|
first_train_day = predict_at.date() - dt.timedelta(weeks=train_horizon)
|
||||||
|
first_start_at = dt.datetime(
|
||||||
|
first_train_day.year,
|
||||||
|
first_train_day.month,
|
||||||
|
first_train_day.day,
|
||||||
|
predict_at.hour,
|
||||||
|
predict_at.minute,
|
||||||
|
)
|
||||||
|
last_train_day = predict_at.date() - dt.timedelta(days=1)
|
||||||
|
last_start_at = dt.datetime(
|
||||||
|
last_train_day.year,
|
||||||
|
last_train_day.month,
|
||||||
|
last_train_day.day,
|
||||||
|
predict_at.hour,
|
||||||
|
predict_at.minute,
|
||||||
|
)
|
||||||
|
|
||||||
|
# The frequency is the number of weekdays.
|
||||||
|
frequency = 7
|
||||||
|
|
||||||
|
# Take only the counts at the `predict_at` time.
|
||||||
|
training_df = intra_pixel.loc[
|
||||||
|
first_start_at : last_start_at : self._n_daily_time_steps # type: ignore
|
||||||
|
]
|
||||||
|
if len(training_df) != frequency * train_horizon:
|
||||||
|
raise RuntimeError('Not enough historic data for `predict_at`')
|
||||||
|
|
||||||
|
actual_df = intra_pixel.loc[[predict_at]]
|
||||||
|
|
||||||
|
return training_df, frequency, actual_df
|
||||||
|
|
|
||||||
|
|
@ -1,10 +1,28 @@
|
||||||
"""Globals used when testing."""
|
"""Globals used when testing."""
|
||||||
|
|
||||||
|
import datetime
|
||||||
|
|
||||||
|
from urban_meal_delivery import config
|
||||||
|
|
||||||
|
|
||||||
# The day on which most test cases take place.
|
# The day on which most test cases take place.
|
||||||
YEAR, MONTH, DAY = 2016, 7, 1
|
YEAR, MONTH, DAY = 2016, 7, 1
|
||||||
|
|
||||||
|
# `START` and `END` constitute a 15-day time span.
|
||||||
|
# That implies a maximum `train_horizon` of `2` as that needs full 7-day weeks.
|
||||||
|
START = datetime.datetime(YEAR, MONTH, DAY, config.SERVICE_START, 0)
|
||||||
|
_end_day = (START + datetime.timedelta(weeks=2)).date()
|
||||||
|
END = datetime.datetime(
|
||||||
|
_end_day.year, _end_day.month, _end_day.day, config.SERVICE_END, 0,
|
||||||
|
)
|
||||||
|
|
||||||
# Default time steps, for example, for `OrderHistory` objects.
|
# Default time steps, for example, for `OrderHistory` objects.
|
||||||
LONG_TIME_STEP = 60
|
LONG_TIME_STEP = 60
|
||||||
SHORT_TIME_STEP = 30
|
SHORT_TIME_STEP = 30
|
||||||
TIME_STEPS = (SHORT_TIME_STEP, LONG_TIME_STEP)
|
TIME_STEPS = (SHORT_TIME_STEP, LONG_TIME_STEP)
|
||||||
|
|
||||||
|
# Default training horizons, for example, for
|
||||||
|
# `OrderHistory.make_horizontal_time_series()`.
|
||||||
|
LONG_TRAIN_HORIZON = 2
|
||||||
|
SHORT_TRAIN_HORIZON = 1
|
||||||
|
TRAIN_HORIZONS = (SHORT_TRAIN_HORIZON, LONG_TRAIN_HORIZON)
|
||||||
|
|
|
||||||
173
tests/forecasts/timify/test_make_time_series.py
Normal file
173
tests/forecasts/timify/test_make_time_series.py
Normal file
|
|
@ -0,0 +1,173 @@
|
||||||
|
"""Test the time series related code."""
|
||||||
|
# pylint:disable=no-self-use,unused-argument
|
||||||
|
|
||||||
|
import datetime
|
||||||
|
|
||||||
|
import pandas as pd
|
||||||
|
import pytest
|
||||||
|
|
||||||
|
from tests import config as test_config
|
||||||
|
from urban_meal_delivery import config
|
||||||
|
from urban_meal_delivery.forecasts import timify
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.fixture
|
||||||
|
def good_pixel_id():
|
||||||
|
"""A `pixel_id` that is on the `grid`."""
|
||||||
|
return 1
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.fixture
|
||||||
|
def order_totals(good_pixel_id):
|
||||||
|
"""A mock for `OrderHistory.totals`.
|
||||||
|
|
||||||
|
To be a bit more realistic, we sample two pixels on the `grid`.
|
||||||
|
"""
|
||||||
|
pixel_ids = [good_pixel_id, good_pixel_id + 1]
|
||||||
|
|
||||||
|
gen = (
|
||||||
|
(pixel_id, start_at)
|
||||||
|
for pixel_id in pixel_ids
|
||||||
|
for start_at in pd.date_range(
|
||||||
|
test_config.START, test_config.END, freq=f'{test_config.LONG_TIME_STEP}T',
|
||||||
|
)
|
||||||
|
if config.SERVICE_START <= start_at.hour < config.SERVICE_END
|
||||||
|
)
|
||||||
|
|
||||||
|
# Re-index `data` filling in `0`s where there is no demand.
|
||||||
|
index = pd.MultiIndex.from_tuples(gen)
|
||||||
|
index.names = ['pixel_id', 'start_at']
|
||||||
|
|
||||||
|
df = pd.DataFrame(data={'total_orders': 0}, index=index)
|
||||||
|
|
||||||
|
# Sanity check: n_pixels * n_time_steps_per_day * n_weekdays * n_weeks.
|
||||||
|
assert len(df) == 2 * 12 * (7 * 2 + 1)
|
||||||
|
|
||||||
|
return df
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.fixture
|
||||||
|
def order_history(order_totals, grid):
|
||||||
|
"""An `OrderHistory` object that does not need the database."""
|
||||||
|
oh = timify.OrderHistory(grid=grid, time_step=test_config.LONG_TIME_STEP)
|
||||||
|
oh._data = order_totals # pylint:disable=protected-access
|
||||||
|
|
||||||
|
return oh
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.fixture
|
||||||
|
def good_predict_at():
|
||||||
|
"""A `predict_at` within `START`-`END` and ...
|
||||||
|
|
||||||
|
... a long enough history so that either `train_horizon=1`
|
||||||
|
or `train_horizon=2` works.
|
||||||
|
"""
|
||||||
|
return datetime.datetime(
|
||||||
|
test_config.END.year, test_config.END.month, test_config.END.day, 12, 0,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.fixture
|
||||||
|
def bad_predict_at():
|
||||||
|
"""A `predict_at` within `START`-`END` but ...
|
||||||
|
|
||||||
|
... not a long enough history so that both `train_horizon=1`
|
||||||
|
and `train_horizon=2` do not work.
|
||||||
|
"""
|
||||||
|
predict_day = test_config.END - datetime.timedelta(weeks=1, days=1)
|
||||||
|
return datetime.datetime(
|
||||||
|
predict_day.year, predict_day.month, predict_day.day, 12, 0,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
class TestMakeHorizontalTimeSeries:
|
||||||
|
"""Test the `OrderHistory.make_horizontal_time_series()` method."""
|
||||||
|
|
||||||
|
@pytest.mark.parametrize('train_horizon', test_config.TRAIN_HORIZONS)
|
||||||
|
def test_wrong_pixel(self, order_history, good_predict_at, train_horizon):
|
||||||
|
"""A `pixel_id` that is not in the `grid`."""
|
||||||
|
with pytest.raises(LookupError):
|
||||||
|
order_history.make_horizontal_time_series(
|
||||||
|
pixel_id=999_999,
|
||||||
|
predict_at=good_predict_at,
|
||||||
|
train_horizon=train_horizon,
|
||||||
|
)
|
||||||
|
|
||||||
|
@pytest.mark.parametrize('train_horizon', test_config.TRAIN_HORIZONS)
|
||||||
|
def test_time_series_are_dataframes(
|
||||||
|
self, order_history, good_pixel_id, good_predict_at, train_horizon,
|
||||||
|
):
|
||||||
|
"""The time series come in a one-column `pd.DataFrame`."""
|
||||||
|
result = order_history.make_horizontal_time_series(
|
||||||
|
pixel_id=good_pixel_id,
|
||||||
|
predict_at=good_predict_at,
|
||||||
|
train_horizon=train_horizon,
|
||||||
|
)
|
||||||
|
|
||||||
|
training_df, _, actual_df = result
|
||||||
|
|
||||||
|
assert isinstance(training_df, pd.DataFrame)
|
||||||
|
assert training_df.columns == ['total_orders']
|
||||||
|
assert isinstance(actual_df, pd.DataFrame)
|
||||||
|
assert actual_df.columns == ['total_orders']
|
||||||
|
|
||||||
|
@pytest.mark.parametrize('train_horizon', test_config.TRAIN_HORIZONS)
|
||||||
|
def test_time_series_have_correct_length(
|
||||||
|
self, order_history, good_pixel_id, good_predict_at, train_horizon,
|
||||||
|
):
|
||||||
|
"""The length of a training time series must be a multiple of `7` ...
|
||||||
|
|
||||||
|
whereas the time series with the actual order counts always holds `1` value.
|
||||||
|
"""
|
||||||
|
result = order_history.make_horizontal_time_series(
|
||||||
|
pixel_id=good_pixel_id,
|
||||||
|
predict_at=good_predict_at,
|
||||||
|
train_horizon=train_horizon,
|
||||||
|
)
|
||||||
|
|
||||||
|
training_df, _, actual_df = result
|
||||||
|
|
||||||
|
assert len(training_df) == 7 * train_horizon
|
||||||
|
assert len(actual_df) == 1
|
||||||
|
|
||||||
|
@pytest.mark.parametrize('train_horizon', test_config.TRAIN_HORIZONS)
|
||||||
|
def test_frequency_is_number_of_weekdays(
|
||||||
|
self, order_history, good_pixel_id, good_predict_at, train_horizon,
|
||||||
|
):
|
||||||
|
"""The `frequency` must be `7`."""
|
||||||
|
result = order_history.make_horizontal_time_series(
|
||||||
|
pixel_id=good_pixel_id,
|
||||||
|
predict_at=good_predict_at,
|
||||||
|
train_horizon=train_horizon,
|
||||||
|
)
|
||||||
|
|
||||||
|
_, frequency, _ = result # noqa:WPS434
|
||||||
|
|
||||||
|
assert frequency == 7
|
||||||
|
|
||||||
|
@pytest.mark.parametrize('train_horizon', test_config.TRAIN_HORIZONS)
|
||||||
|
def test_no_long_enough_history1(
|
||||||
|
self, order_history, good_pixel_id, bad_predict_at, train_horizon,
|
||||||
|
):
|
||||||
|
"""If the `predict_at` day is too early in the `START`-`END` horizon ...
|
||||||
|
|
||||||
|
... the history of order totals is not long enough.
|
||||||
|
"""
|
||||||
|
with pytest.raises(RuntimeError):
|
||||||
|
order_history.make_horizontal_time_series(
|
||||||
|
pixel_id=good_pixel_id,
|
||||||
|
predict_at=bad_predict_at,
|
||||||
|
train_horizon=train_horizon,
|
||||||
|
)
|
||||||
|
|
||||||
|
def test_no_long_enough_history2(
|
||||||
|
self, order_history, good_pixel_id, good_predict_at,
|
||||||
|
):
|
||||||
|
"""If the `train_horizon` is longer than the `START`-`END` horizon ...
|
||||||
|
|
||||||
|
... the history of order totals can never be long enough.
|
||||||
|
"""
|
||||||
|
with pytest.raises(RuntimeError):
|
||||||
|
order_history.make_horizontal_time_series(
|
||||||
|
pixel_id=good_pixel_id, predict_at=good_predict_at, train_horizon=999,
|
||||||
|
)
|
||||||
Loading…
Reference in a new issue