Add OrderHistory.make_horizontal_time_series()

- the method slices out a horizontal time series from the data within
  an `OrderHistory` object
This commit is contained in:
Alexander Hess 2021-01-09 16:34:42 +01:00
parent 65d1632e98
commit b61db734b6
Signed by: alexander
GPG key ID: 344EA5AB10D868E0
3 changed files with 258 additions and 0 deletions

View file

@ -1,6 +1,7 @@
"""Obtain and work with time series data."""
import datetime as dt
from typing import Tuple
import pandas as pd
@ -145,3 +146,69 @@ class OrderHistory:
index.names = ['pixel_id', 'start_at']
return data.reindex(index, fill_value=0)
def make_horizontal_time_series( # noqa:WPS210
self, pixel_id: int, predict_at: dt.datetime, train_horizon: int,
) -> Tuple[pd.DataFrame, int, int]:
"""Slice a horizontal time series out of the `.totals`.
Create a time series covering `train_horizon` weeks that can be used
for training a forecasting model to predict the demand at `predict_at`.
For explanation of the terms "horizontal", "vertical", and "real-time"
in the context of time series, see section 3.2 in the following paper:
https://github.com/webartifex/urban-meal-delivery-demand-forecasting/blob/main/paper.pdf
Args:
pixel_id: pixel in which the time series is aggregated
predict_at: time step (i.e., "start_at") for which a prediction is made
train_horizon: weeks of historic data used to predict `predict_at`
Returns:
training time series, frequency, actual order count at `predict_at`
Raises:
LookupError: `pixel_id` is not in the `grid`
RuntimeError: desired time series slice is not entirely in `.totals`
"""
try:
intra_pixel = self.totals.loc[pixel_id]
except KeyError:
raise LookupError('The `pixel_id` is not in the `grid`') from None
if predict_at >= config.CUTOFF_DAY: # pragma: no cover
raise RuntimeError('Internal error: cannot predict beyond the given data')
# The first and last training day are just before the `predict_at` day
# and span exactly `train_horizon` weeks covering only the times of the
# day equal to the hour/minute of `predict_at`.
first_train_day = predict_at.date() - dt.timedelta(weeks=train_horizon)
first_start_at = dt.datetime(
first_train_day.year,
first_train_day.month,
first_train_day.day,
predict_at.hour,
predict_at.minute,
)
last_train_day = predict_at.date() - dt.timedelta(days=1)
last_start_at = dt.datetime(
last_train_day.year,
last_train_day.month,
last_train_day.day,
predict_at.hour,
predict_at.minute,
)
# The frequency is the number of weekdays.
frequency = 7
# Take only the counts at the `predict_at` time.
training_df = intra_pixel.loc[
first_start_at : last_start_at : self._n_daily_time_steps # type: ignore
]
if len(training_df) != frequency * train_horizon:
raise RuntimeError('Not enough historic data for `predict_at`')
actual_df = intra_pixel.loc[[predict_at]]
return training_df, frequency, actual_df

View file

@ -1,10 +1,28 @@
"""Globals used when testing."""
import datetime
from urban_meal_delivery import config
# The day on which most test cases take place.
YEAR, MONTH, DAY = 2016, 7, 1
# `START` and `END` constitute a 15-day time span.
# That implies a maximum `train_horizon` of `2` as that needs full 7-day weeks.
START = datetime.datetime(YEAR, MONTH, DAY, config.SERVICE_START, 0)
_end_day = (START + datetime.timedelta(weeks=2)).date()
END = datetime.datetime(
_end_day.year, _end_day.month, _end_day.day, config.SERVICE_END, 0,
)
# Default time steps, for example, for `OrderHistory` objects.
LONG_TIME_STEP = 60
SHORT_TIME_STEP = 30
TIME_STEPS = (SHORT_TIME_STEP, LONG_TIME_STEP)
# Default training horizons, for example, for
# `OrderHistory.make_horizontal_time_series()`.
LONG_TRAIN_HORIZON = 2
SHORT_TRAIN_HORIZON = 1
TRAIN_HORIZONS = (SHORT_TRAIN_HORIZON, LONG_TRAIN_HORIZON)

View file

@ -0,0 +1,173 @@
"""Test the time series related code."""
# pylint:disable=no-self-use,unused-argument
import datetime
import pandas as pd
import pytest
from tests import config as test_config
from urban_meal_delivery import config
from urban_meal_delivery.forecasts import timify
@pytest.fixture
def good_pixel_id():
"""A `pixel_id` that is on the `grid`."""
return 1
@pytest.fixture
def order_totals(good_pixel_id):
"""A mock for `OrderHistory.totals`.
To be a bit more realistic, we sample two pixels on the `grid`.
"""
pixel_ids = [good_pixel_id, good_pixel_id + 1]
gen = (
(pixel_id, start_at)
for pixel_id in pixel_ids
for start_at in pd.date_range(
test_config.START, test_config.END, freq=f'{test_config.LONG_TIME_STEP}T',
)
if config.SERVICE_START <= start_at.hour < config.SERVICE_END
)
# Re-index `data` filling in `0`s where there is no demand.
index = pd.MultiIndex.from_tuples(gen)
index.names = ['pixel_id', 'start_at']
df = pd.DataFrame(data={'total_orders': 0}, index=index)
# Sanity check: n_pixels * n_time_steps_per_day * n_weekdays * n_weeks.
assert len(df) == 2 * 12 * (7 * 2 + 1)
return df
@pytest.fixture
def order_history(order_totals, grid):
"""An `OrderHistory` object that does not need the database."""
oh = timify.OrderHistory(grid=grid, time_step=test_config.LONG_TIME_STEP)
oh._data = order_totals # pylint:disable=protected-access
return oh
@pytest.fixture
def good_predict_at():
"""A `predict_at` within `START`-`END` and ...
... a long enough history so that either `train_horizon=1`
or `train_horizon=2` works.
"""
return datetime.datetime(
test_config.END.year, test_config.END.month, test_config.END.day, 12, 0,
)
@pytest.fixture
def bad_predict_at():
"""A `predict_at` within `START`-`END` but ...
... not a long enough history so that both `train_horizon=1`
and `train_horizon=2` do not work.
"""
predict_day = test_config.END - datetime.timedelta(weeks=1, days=1)
return datetime.datetime(
predict_day.year, predict_day.month, predict_day.day, 12, 0,
)
class TestMakeHorizontalTimeSeries:
"""Test the `OrderHistory.make_horizontal_time_series()` method."""
@pytest.mark.parametrize('train_horizon', test_config.TRAIN_HORIZONS)
def test_wrong_pixel(self, order_history, good_predict_at, train_horizon):
"""A `pixel_id` that is not in the `grid`."""
with pytest.raises(LookupError):
order_history.make_horizontal_time_series(
pixel_id=999_999,
predict_at=good_predict_at,
train_horizon=train_horizon,
)
@pytest.mark.parametrize('train_horizon', test_config.TRAIN_HORIZONS)
def test_time_series_are_dataframes(
self, order_history, good_pixel_id, good_predict_at, train_horizon,
):
"""The time series come in a one-column `pd.DataFrame`."""
result = order_history.make_horizontal_time_series(
pixel_id=good_pixel_id,
predict_at=good_predict_at,
train_horizon=train_horizon,
)
training_df, _, actual_df = result
assert isinstance(training_df, pd.DataFrame)
assert training_df.columns == ['total_orders']
assert isinstance(actual_df, pd.DataFrame)
assert actual_df.columns == ['total_orders']
@pytest.mark.parametrize('train_horizon', test_config.TRAIN_HORIZONS)
def test_time_series_have_correct_length(
self, order_history, good_pixel_id, good_predict_at, train_horizon,
):
"""The length of a training time series must be a multiple of `7` ...
whereas the time series with the actual order counts always holds `1` value.
"""
result = order_history.make_horizontal_time_series(
pixel_id=good_pixel_id,
predict_at=good_predict_at,
train_horizon=train_horizon,
)
training_df, _, actual_df = result
assert len(training_df) == 7 * train_horizon
assert len(actual_df) == 1
@pytest.mark.parametrize('train_horizon', test_config.TRAIN_HORIZONS)
def test_frequency_is_number_of_weekdays(
self, order_history, good_pixel_id, good_predict_at, train_horizon,
):
"""The `frequency` must be `7`."""
result = order_history.make_horizontal_time_series(
pixel_id=good_pixel_id,
predict_at=good_predict_at,
train_horizon=train_horizon,
)
_, frequency, _ = result # noqa:WPS434
assert frequency == 7
@pytest.mark.parametrize('train_horizon', test_config.TRAIN_HORIZONS)
def test_no_long_enough_history1(
self, order_history, good_pixel_id, bad_predict_at, train_horizon,
):
"""If the `predict_at` day is too early in the `START`-`END` horizon ...
... the history of order totals is not long enough.
"""
with pytest.raises(RuntimeError):
order_history.make_horizontal_time_series(
pixel_id=good_pixel_id,
predict_at=bad_predict_at,
train_horizon=train_horizon,
)
def test_no_long_enough_history2(
self, order_history, good_pixel_id, good_predict_at,
):
"""If the `train_horizon` is longer than the `START`-`END` horizon ...
... the history of order totals can never be long enough.
"""
with pytest.raises(RuntimeError):
order_history.make_horizontal_time_series(
pixel_id=good_pixel_id, predict_at=good_predict_at, train_horizon=999,
)