urban-meal-delivery/tests/forecasts/conftest.py
Alexander Hess cb7611d587
Add OrderHistory.avg_daily_demand()
- the method calculates the number of daily `Order`s in a `Pixel`
  withing the `train_horizon` preceding the `predict_day`
2021-02-01 21:50:42 +01:00

138 lines
3.8 KiB
Python

"""Fixtures for testing the `urban_meal_delivery.forecasts` sub-package."""
import datetime as dt
import pandas as pd
import pytest
from tests import config as test_config
from urban_meal_delivery import config
from urban_meal_delivery.forecasts import timify
@pytest.fixture
def horizontal_datetime_index():
"""A `pd.Index` with `DateTime` values.
The times resemble a horizontal time series with a `frequency` of `7`.
All observations take place at `NOON`.
"""
first_start_at = dt.datetime(
test_config.YEAR, test_config.MONTH, test_config.DAY, test_config.NOON, 0,
)
gen = (
start_at
for start_at in pd.date_range(first_start_at, test_config.END, freq='D')
)
index = pd.Index(gen)
index.name = 'start_at'
# Sanity check.
# `+1` as both the `START` and `END` day are included.
n_days = (test_config.END - test_config.START).days + 1
assert len(index) == n_days
return index
@pytest.fixture
def horizontal_no_demand(horizontal_datetime_index):
"""A horizontal time series with order totals: no demand."""
return pd.Series(0, index=horizontal_datetime_index, name='n_orders')
@pytest.fixture
def vertical_datetime_index():
"""A `pd.Index` with `DateTime` values.
The times resemble a vertical time series with a
`frequency` of `7` times the number of daily time steps,
which is `12` for `LONG_TIME_STEP` values.
"""
gen = (
start_at
for start_at in pd.date_range(
test_config.START, test_config.END, freq=f'{test_config.LONG_TIME_STEP}T',
)
if config.SERVICE_START <= start_at.hour < config.SERVICE_END
)
index = pd.Index(gen)
index.name = 'start_at'
# Sanity check: n_days * n_number_of_opening_hours.
# `+1` as both the `START` and `END` day are included.
n_days = (test_config.END - test_config.START).days + 1
assert len(index) == n_days * 12
return index
@pytest.fixture
def vertical_no_demand(vertical_datetime_index):
"""A vertical time series with order totals: no demand."""
return pd.Series(0, index=vertical_datetime_index, name='n_orders')
@pytest.fixture
def good_pixel_id(pixel):
"""A `pixel_id` that is on the `grid`."""
return pixel.id # `== 1`
@pytest.fixture
def predict_at() -> dt.datetime:
"""`NOON` on the day to be predicted."""
return dt.datetime(
test_config.END.year,
test_config.END.month,
test_config.END.day,
test_config.NOON,
)
@pytest.fixture
def order_totals(good_pixel_id):
"""A mock for `OrderHistory.totals`.
To be a bit more realistic, we sample two pixels on the `grid`.
Uses the LONG_TIME_STEP as the length of a time step.
"""
pixel_ids = [good_pixel_id, good_pixel_id + 1]
gen = (
(pixel_id, start_at)
for pixel_id in pixel_ids
for start_at in pd.date_range(
test_config.START, test_config.END, freq=f'{test_config.LONG_TIME_STEP}T',
)
if config.SERVICE_START <= start_at.hour < config.SERVICE_END
)
# Re-index `data` filling in `0`s where there is no demand.
index = pd.MultiIndex.from_tuples(gen)
index.names = ['pixel_id', 'start_at']
df = pd.DataFrame(data={'n_orders': 1}, index=index)
# Sanity check: n_pixels * n_time_steps_per_day * n_days.
# `+1` as both the `START` and `END` day are included.
n_days = (test_config.END - test_config.START).days + 1
assert len(df) == 2 * 12 * n_days
return df
@pytest.fixture
def order_history(order_totals, grid):
"""An `OrderHistory` object that does not need the database.
Uses the LONG_TIME_STEP as the length of a time step.
"""
oh = timify.OrderHistory(grid=grid, time_step=test_config.LONG_TIME_STEP)
oh._data = order_totals
return oh